3 resultados para Breeding and breeds

em Brock University, Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increased losses of eggs and chicks resulting from human intrusion (investigator or other) into seabird colonies has been well documented. In 1990/91, I studied the effects of investigator disturbance on aggressive behaviour and breeding success of individual pairs of ring-billed gulls nesting at two colonies near Port Colborne, Ontario. The insular colony was on an artificial breakwall, associated with the Welland Ship Canal, approximately 1 km off the north shore of Lake Erie. The mainland colony was adjacent to the canal approximately 1 km east of the breakwall. The frequencies of adult threat and assault behaviours, chick movement and adult attacks on chicks were recorded by continuous scan sampling 30 min prior to, 30 min during and 60 (2 X 30) min after investigator disturbance. The frequency of threat and assault behaviours increased during the period of investigator activity in the colony while the duration of wingpulls and beakpulls decreased. Significantly more chicks ran ("runners") from their natal territories during disturbances and "runners" were more frequently attacked than "territorial" chicks. No chicks were fatally attacked during disturbance and "runners" returned to their natal territories quickly after disturbance. Breeding success was determined for pairs nesting in study plots subjected to two levels of disturbance (normal and moderate). The disturbance level of each plot differed in visitation frequency and activities performed on each visit. Investigator disturbance had no effect on the hatching success or fledging success (taken as 21 days of age) of ring-billed gull study pairs at either colony.